scaled.dev.Rd
From MCA results, computes scaled deviations between categories for a categorical supplementary variable.
scaled.dev(resmca, var)
object of class MCA
, speMCA
, csMCA
, stMCA
or multiMCA
the categorical supplementary variable. It does not need to have been used at the MCA step.
Returns a list with one matrix for each dimension of the MCA. Each matrix is filled with scaled deviations between the categories of the supplementary variable, for a given dimension.
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
# specific MCA of Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# computes scaled deviations for Age supplementary variable
scaled.dev(mca,Music$Age)
#> $dim.1
#> 15-24 25-49 50+
#> 15-24 0.000 0.496 0.558
#> 25-49 0.496 0.000 0.062
#> 50+ 0.558 0.062 0.000
#>
#> $dim.2
#> 15-24 25-49 50+
#> 15-24 0.000 0.546 1.283
#> 25-49 0.546 0.000 0.737
#> 50+ 1.283 0.737 0.000
#>
#> $dim.3
#> 15-24 25-49 50+
#> 15-24 0.000 0.419 0.327
#> 25-49 0.419 0.000 0.092
#> 50+ 0.327 0.092 0.000
#>
#> $dim.4
#> 15-24 25-49 50+
#> 15-24 0.000 0.105 0.093
#> 25-49 0.105 0.000 0.199
#> 50+ 0.093 0.199 0.000
#>
#> $dim.5
#> 15-24 25-49 50+
#> 15-24 0.000 0.101 0.146
#> 25-49 0.101 0.000 0.045
#> 50+ 0.146 0.045 0.000
#>