ctree-module.RdThe module builds a conditional inference trees according to several parameter inputs. Then it plots the tree and computes performance measures, variable importance, checks the stability and return the code to reproduce the analyses.
ctreeUI(id)
ctreeServer(id, data, name)Module id. See shiny::callModule().
shiny::reactive() function returning a data.frame to use for the analyses.
shiny::reactive() function returning a character string representing data name.
Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The American Statistician. 60:257–263, 2006.
Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Framework". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.
library(shiny)
library(moreparty)
data(titanic)
ui <- fluidPage(
titlePanel("Conditional inference trees"),
ctreeUI(id = "ctree_app")
)
server <- function(input, output, session) {
rv <- reactiveValues(
data = titanic,
name = deparse(substitute(titanic))
)
ctreeServer(id = "ctree_app", reactive(rv$data), reactive(rv$name))
}
if (interactive())
shinyApp(ui, server)