plot.csMCA.Rd
Plots a class specific Multiple Correspondence Analysis (resulting from csMCA
function), i.e. the clouds of individuals or categories.
# S3 method for csMCA
plot(x, type = "v", axes = 1:2, points = "all",
col = "dodgerblue4", app = 0, ...)
object of class csMCA
character string: 'v' to plot the categories (default), 'i' to plot individuals' points, 'inames' to plot individuals' names
numeric vector of length 2, specifying the components (axes) to plot (c(1,2) is default)
character string. If 'all' all points are plotted (default); if 'besth' only those who contribute most to horizontal axis are plotted; if 'bestv' only those who contribute most to vertical axis are plotted; if 'besthv' only those who contribute most to horizontal or vertical axis are plotted.
color for the points of the individuals or for the labels of the categories (default is 'dodgerblue4')
numerical value. If 0 (default), only the labels of the categories are plotted and their size is constant; if 1, only the labels are plotted and their size is proportional to the weights of the categories; if 2, points (triangles) and labels are plotted, and points size is proportional to the weight of the categories.
further arguments passed to or from other methods, such as cex, cex.main, ...
A category is considered to be one of the most contributing to a given axis if its contribution is higher than the average contribution, i.e. 100 divided by the total number of categories.
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
# class specific MCA on Music example data set
# ignoring every NA values categories
# and focusing on the subset of women,
data(Music)
female <- Music$Gender=="Women"
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- csMCA(Music[,1:5], subcloud = female, excl = junk)
# cloud of categories
plot(mca)
# cloud of most contributing categories
plot(mca,axes=c(2,3), points = "besthv", col = "darkred", app = 1)