homog.test.Rd
From MCA results, computes a homogeneity test between categories of a supplementary variable, i.e. characterizes the homogeneity of several subclouds.
homog.test(resmca, var, dim = c(1,2))
object of class MCA
, speMCA
, csMCA
, stMCA
or multiMCA
the categorical supplementary variable. It does not need to have been used at the MCA step.
the axes which are described. Default is c(1,2)
Returns a list of lists, one for each selected dimension in the MCA. Each list has 2 elements :
The square matrix of test statistics
The square matrix of p-values
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
# specific MCA of Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# homogeneity test for variable Age
homog.test(mca, Music$Age)
#> $dim.1
#> $dim.1$test.stat
#> 15-24 25-49 50+
#> 15-24 0.000000 3.7253364 4.2265912
#> 25-49 3.725336 0.0000000 0.6334962
#> 50+ 4.226591 0.6334962 0.0000000
#>
#> $dim.1$p.values
#> 15-24 25-49 50+
#> 15-24 1.000000e+00 0.0001950549 2.372582e-05
#> 25-49 1.950549e-04 1.0000000000 5.264096e-01
#> 50+ 2.372582e-05 0.5264096384 1.000000e+00
#>
#>
#> $dim.2
#> $dim.2$test.stat
#> 15-24 25-49 50+
#> 15-24 0.000000 4.096013 9.711800
#> 25-49 4.096013 0.000000 7.556267
#> 50+ 9.711800 7.556267 0.000000
#>
#> $dim.2$p.values
#> 15-24 25-49 50+
#> 15-24 1.000000e+00 4.203268e-05 0.000000e+00
#> 25-49 4.203268e-05 1.000000e+00 4.152234e-14
#> 50+ 0.000000e+00 4.152234e-14 1.000000e+00
#>
#>