dimtypicality.Rd
Computes typicality tests for a list of supplementary variables of a MCA.
dimtypicality(resmca, vars, dim = c(1,2), max.pval = 1)
object of class MCA
, speMCA
, csMCA
, stMCA
or multiMCA
a data frame of supplementary variables
the axes for which typicality tests are computed. Default is c(1,2)
only categories with a p-value lower or equal to max.pval
are displayed. If 1 (default), all categories are displayed
Returns a list of data frames giving the typicality test statistics and p-values of the supplementary categories for the different axes.
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
# specific MCA on Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# typicality tests for gender and age
dimtypicality(mca, Music[, c("Gender", "Age")])
#> $dim.1
#> weight test.stat p.value
#> Age.15-24 78 4.282548 0.00002
#> Gender.Men 253 0.055648 0.95562
#> Gender.Women 247 -0.055648 0.95562
#> Age.25-49 204 -0.936718 0.34890
#> Age.50+ 218 -2.205306 0.02743
#>
#> $dim.2
#> weight test.stat p.value
#> Age.50+ 218 9.834220 0.00000
#> Gender.Women 247 2.153442 0.03128
#> Gender.Men 253 -2.153442 0.03128
#> Age.25-49 204 -4.378377 0.00001
#> Age.15-24 78 -7.509471 0.00000
#>