Identifies the categories and individuals that contribute the most to each dimension obtained by a Multiple Correspondence Analysis.

dimcontrib(resmca, dim = c(1,2), best = TRUE)

Arguments

resmca

object of class MCA, speMCA, or csMCA

dim

numerical vector of the dimensions to describe (default is c(1,2))

best

logical. If FALSE, displays all the categories. If TRUE (default), displays only categories and individuals with contributions higher than average

Details

Contributions are sorted and assigned a positive or negative sign according to the corresponding categories or individuals coordinates, so as to facilitate interpretation.

Value

Returns a list with the following items :

var

a list of categories contributions to axes

ind

a list of individuals contributions to axes

References

Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).

Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).

Author

Nicolas Robette

Examples

# specific MCA on Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# contributions to axes 1 and 2
dimcontrib(mca)
#> $var
#> $var$dim.1
#>                  ctr weight
#> Jazz.Yes      -35.34     95
#> Classical.Yes -27.72    142
#> Classical.No   10.80    351
#> 
#> $var$dim.2
#>             ctr weight
#> Rap.Yes  -40.74     77
#> Rock.Yes -30.57    135
#> Rock.No   11.19    360
#> 
#> 
#> $ind
#> $ind$dim.1
#>      4900      4763       986      1419      1762      2017      1624      4021 
#> -1.357604 -1.357604 -1.357604 -1.357604 -1.357604 -1.357604 -1.357604 -1.357604 
#>      3857      1642      4064      3208      2660      2957      3694      3413 
#> -1.357604 -1.357604 -1.197912 -1.197912 -1.197912 -1.197912 -1.197912 -1.197912 
#>      4491      2004      1147      1049      3574      4308        11      1982 
#> -0.913815 -0.848472 -0.848472 -0.848472 -0.767956 -0.767956 -0.767956 -0.767956 
#>      3775      3767      3109       643       516       621      1362      2841 
#> -0.767956 -0.767956 -0.767956 -0.767956 -0.767956 -0.767956 -0.767956 -0.767956 
#>      3557      1023      2106      4990      2364      1387      1291      3863 
#> -0.767956 -0.767956 -0.767956 -0.723274 -0.723274 -0.721477 -0.649088 -0.649088 
#>      1627      1704        23      4046      1185      3788      3340      2535 
#> -0.649088 -0.649088 -0.649088 -0.649088 -0.649088 -0.649088 -0.649088 -0.649088 
#>      4984      2259      3436      2675      1857      2394      4845      1481 
#> -0.649088 -0.649088 -0.649088 -0.649088 -0.649088 -0.649088 -0.412279 -0.412279 
#>      1924      2508      4304      4661      1212      4707       460       865 
#> -0.412279 -0.412279 -0.412279 -0.412279 -0.412279 -0.412279 -0.412279 -0.412279 
#>      1011       893      2828      2489      3636      2066      1089       506 
#> -0.412279 -0.333642 -0.333304 -0.326520 -0.326520 -0.326520 -0.326520 -0.274455 
#>      1459      3639        20      2950      3858       304       689      2441 
#> -0.274455 -0.274455 -0.274455 -0.274455 -0.274455 -0.274455 -0.274455 -0.274455 
#>      4755       296      3623      1899      2934      1553       297      4838 
#> -0.274455 -0.205402 -0.205402 -0.205402 -0.205402 -0.205402 -0.205402  0.206194 
#>       459      4485      4742      3386      4010      4187      1327      3621 
#>  0.206194  0.228793  0.228793  0.283084  0.283084  0.283084  0.283084  0.283084 
#>      2100      1501      2500      1436      4563      1834      4698      1328 
#>  0.283084  0.283084  0.283084  0.283084  0.283084  0.283084  0.283084  0.283084 
#>      2750      1238      1016      4154      3094       620      4167      1714 
#>  0.283084  0.283084  0.283084  0.283084  0.283084  0.283084  0.283084  0.283084 
#>       450      2218       377      3777       421      2421      2578      1202 
#>  0.283084  0.312470  0.363280  0.363280  0.363280  0.363280  0.363280  0.363280 
#>      4668      3726      2043      4151      2034       381      3294      4565 
#>  0.363280  0.363280  0.363280  0.363280  0.363280  0.363280  0.363280  0.363280 
#>      1040      1441      2285       963      1313      4361 
#>  0.363280  0.363280  0.363280  0.363280  0.363280  0.363280 
#> 
#> $ind$dim.2
#>      4757      4564       740      1848      4705      3550      3478      3760 
#> -1.930377 -1.930377 -1.850166 -1.850166 -1.850166 -1.455065 -1.455065 -1.385538 
#>      2961      2419      4312       223      4076      1882      1986       420 
#> -1.385538 -1.385538 -1.385538 -1.385538 -1.385538 -1.385538 -1.385538 -1.385538 
#>      1094      4990      2364      2004      1147      1049      1489      1665 
#> -1.385538 -1.291869 -1.291869 -1.226406 -1.226406 -1.226406 -0.909133 -0.854354 
#>      1972      1250      3452      2828      4485      4742       377      3777 
#> -0.854354 -0.541072 -0.541072 -0.458115 -0.380185 -0.380185 -0.338292 -0.338292 
#>       421      2421      2578      1202      4668      3726      2043      4151 
#> -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 
#>      2034       381      3294      4565      1040      1441      2285       963 
#> -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 -0.338292 
#>      1313      4361      2218      2489      3636      2066      1089      3386 
#> -0.338292 -0.338292 -0.320103 -0.317821 -0.317821 -0.317821 -0.317821 -0.305208 
#>      4010      4187      1327      3621      2100      1501      2500      1436 
#> -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 
#>      4563      1834      4698      1328      2750      1238      1016      4154 
#> -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 
#>      3094       620      4167      1714       450      4845      1481      1924 
#> -0.305208 -0.305208 -0.305208 -0.305208 -0.305208 -0.285781 -0.285781 -0.285781 
#>      2508      4304      4661      1212      4707       460       865      1011 
#> -0.285781 -0.285781 -0.285781 -0.285781 -0.285781 -0.285781 -0.285781 -0.285781 
#>       371      4838       459      4246      4618       641      3508      1546 
#> -0.259666 -0.258787 -0.258787  0.213267  0.213267  0.241062  0.246782  0.246782 
#>      2846       151      3126      1945      1093      1176      1075      4043 
#>  0.246782  0.246782  0.246782  0.246782  0.246782  0.246782  0.246782  0.246782 
#>      4107       949      2026      3942      1820      3986      1932      1670 
#>  0.246782  0.246782  0.246782  0.246782  0.246782  0.276616  0.276616  0.276616 
#>      2404        31      4274       280      3793       701      1959      3769 
#>  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616 
#>      4814      2114       984      3286        58      3702      4000      2827 
#>  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616 
#>       161      1111      4367       696        88      4100      2312      2610 
#>  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616 
#>       337      1059      1506      3377      1433        89      2906      4930 
#>  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616 
#>       422       106       180      3657       927      4458      4251      1877 
#>  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616  0.276616 
#>      3063 
#>  0.276616 
#> 
#>