Computes stress measure of multidimensional scaling data for different number of dimensions of the represented space

seqmds.stress(seqdist, mds)

Arguments

seqdist

a dissimilarity matrix or a dist object (see dist)

mds

a matrix with coordinates in the represented space (dimension 1 in column 1, dimension 2 in column 2, etc.)

Value

A numerical vector of stress values.

References

Piccarreta R., Lior O. (2010). Exploring sequences: a graphical tool based on multi-dimensional scaling, Journal of the Royal Statistical Society (Series A), Vol. 173(1), 165-184.

Author

Nicolas Robette

Examples

data(trajact)
seqact <- seqdef(trajact)
#>  [>] 6 distinct states appear in the data: 
#>      1 = 1
#>      2 = 2
#>      3 = 3
#>      4 = 4
#>      5 = 5
#>      6 = 6
#>  [>] state coding:
#>        [alphabet]  [label]  [long label] 
#>      1  1           1        1
#>      2  2           2        2
#>      3  3           3        3
#>      4  4           4        4
#>      5  5           5        5
#>      6  6           6        6
#>  [>] 500 sequences in the data set
#>  [>] min/max sequence length: 37/37
dissim <- seqdist(seqact, method="HAM")
#>  [>] 500 sequences with 6 distinct states
#>  [>] creating a 'sm' with a single substitution cost of 1
#>  [>] creating 6x6 substitution-cost matrix using 1 as constant value
#>  [>] 377 distinct  sequences 
#>  [>] min/max sequence lengths: 37/37
#>  [>] computing distances using the HAM metric
#>  [>] elapsed time: 0.114 secs
mds <- cmdscale(dissim, k=20, eig=TRUE)
stress <- seqmds.stress(dissim, mds)
plot(stress, type='l', xlab='number of dimensions', ylab='stress')