assoc.domains.Rd
Computes various measures of association between dimensions of multidimensional sequence data.
assoc.domains(dlist, names, djsa)
A list of dissimilarity matrices or dist objects (see dist
), with one element per dimension of the multidimensional sequence data
A character vector of the names of the dimensions of the multidimensional sequence data
A dissimilarity matrix or a dist object (see dist
), corresponding to the distances between the multimdimensional sequences
Piccarreta R. (2017). Joint Sequence Analysis: Association and Clustering, Sociological Methods and Research, Vol. 46(2), 252-287.
# \donttest{
library(TraMineR)
data(biofam)
## Building one channel per type of event (left, children or married)
bf <- as.matrix(biofam[, 10:25])
children <- bf==4 | bf==5 | bf==6
married <- bf == 2 | bf== 3 | bf==6
left <- bf==1 | bf==3 | bf==5 | bf==6
## Building sequence objects
child.seq <- seqdef(children)
#> [>] 2 distinct states appear in the data:
#> 1 = FALSE
#> 2 = TRUE
#> [>] state coding:
#> [alphabet] [label] [long label]
#> 1 FALSE FALSE FALSE
#> 2 TRUE TRUE TRUE
#> [>] 2000 sequences in the data set
#> [>] min/max sequence length: 16/16
marr.seq <- seqdef(married)
#> [>] 2 distinct states appear in the data:
#> 1 = FALSE
#> 2 = TRUE
#> [>] state coding:
#> [alphabet] [label] [long label]
#> 1 FALSE FALSE FALSE
#> 2 TRUE TRUE TRUE
#> [>] 2000 sequences in the data set
#> [>] min/max sequence length: 16/16
left.seq <- seqdef(left)
#> [>] 2 distinct states appear in the data:
#> 1 = FALSE
#> 2 = TRUE
#> [>] state coding:
#> [alphabet] [label] [long label]
#> 1 FALSE FALSE FALSE
#> 2 TRUE TRUE TRUE
#> [>] 2000 sequences in the data set
#> [>] min/max sequence length: 16/16
## Using Hamming distance
mcdist <- seqdistmc(channels=list(child.seq, marr.seq, left.seq),
method="HAM")
#> [!!] 3 domains with 2000 sequences
#> [>] building MD sequences of combined states...
#> OK
#> [>] computing substitution cost matrix for domain 1
#> [>] computing substitution cost matrix for domain 2
#> [>] computing substitution cost matrix for domain 3
#> [>] computing MD substitution and indel costs with additive trick...
#> OK
#> [>] computing distances using additive trick ...
#> [>] 2000 sequences with 7 distinct states
#> [>] checking 'sm' (size and triangle inequality)
#> [>] 537 distinct sequences
#> [>] min/max sequence lengths: 16/16
#> [>] computing distances using the HAM metric
#> [>] elapsed time: 0.499 secs
child.dist <- seqdist(child.seq, method="HAM")
#> [>] 2000 sequences with 2 distinct states
#> [>] creating a 'sm' with a single substitution cost of 1
#> [>] creating 2x2 substitution-cost matrix using 1 as constant value
#> [>] 38 distinct sequences
#> [>] min/max sequence lengths: 16/16
#> [>] computing distances using the HAM metric
#> [>] elapsed time: 0.321 secs
marr.dist <- seqdist(marr.seq, method="HAM")
#> [>] 2000 sequences with 2 distinct states
#> [>] creating a 'sm' with a single substitution cost of 1
#> [>] creating 2x2 substitution-cost matrix using 1 as constant value
#> [>] 58 distinct sequences
#> [>] min/max sequence lengths: 16/16
#> [>] computing distances using the HAM metric
#> [>] elapsed time: 0.459 secs
left.dist <- seqdist(left.seq, method="HAM")
#> [>] 2000 sequences with 2 distinct states
#> [>] creating a 'sm' with a single substitution cost of 1
#> [>] creating 2x2 substitution-cost matrix using 1 as constant value
#> [>] 64 distinct sequences
#> [>] min/max sequence lengths: 16/16
#> [>] computing distances using the HAM metric
#> [>] elapsed time: 0.237 secs
## Association between domains
asso <- assoc.domains(list(child.dist,marr.dist,left.dist), c('child','marr','left'), mcdist)
asso
#> $correlations
#> $correlations$pearson
#> child marr left jsa
#> child 1.000 0.339 0.067 0.673
#> marr 0.339 1.000 0.117 0.679
#> left 0.067 0.117 1.000 0.653
#> jsa 0.673 0.679 0.653 1.000
#>
#> $correlations$spearman
#> child marr left jsa
#> child 1.000 0.283 0.052 0.605
#> marr 0.283 1.000 0.119 0.658
#> left 0.052 0.119 1.000 0.653
#> jsa 0.605 0.658 0.653 1.000
#>
#>
#> $`mean squared correlations`
#> $`mean squared correlations`$pearson
#> [1] 0.447
#>
#> $`mean squared correlations`$spearman
#> [1] 0.408
#>
#>
#> $`Cronbach's alpha`
#> $`Cronbach's alpha`$`(child,marr,left)`
#> [1] 0.388
#>
#> $`Cronbach's alpha`$`(child,marr)`
#> [1] 0.506
#>
#> $`Cronbach's alpha`$`(child,left)`
#> [1] 0.126
#>
#> $`Cronbach's alpha`$`(marr,left)`
#> [1] 0.209
#>
#>
# }