modif.rate.Rd
Computes Benzecri's modified rates of variance of a multiple correspondence analysis.
modif.rate(resmca)
object of class MCA
, speMCA
, csMCA
, stMCA
or multiMCA
As MCA clouds often have a high dimensionality, the variance rates of the first principle axes may be quite low, which makes them hard to interpret. Benzecri (1992, p.412) proposed to use modified rates to better appreciate the relative importance of the principal axes.
Returns a list of two data frames.
The first one is called raw
and has 3 variables:
eigen values
rates
cumulative rates
The second one is called modif
and has 2 variables:
modified rates
cumulative modified rates
Benzecri J.P., Correspondence analysis handbook, New-York: Dekker (1992).
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
# MCA of Music' example data set
data(Music)
mca <- speMCA(Music[,1:5])
# modified rates of variance
modif.rate(mca)
#> $raw
#> eigen rate cum.rate
#> 1 2.815811e-01 1.407906e+01 14.07906
#> 2 2.388327e-01 1.194164e+01 26.02069
#> 3 2.242049e-01 1.121024e+01 37.23094
#> 4 2.167211e-01 1.083606e+01 48.06699
#> 5 2.016064e-01 1.008032e+01 58.14731
#> 6 1.942821e-01 9.714105e+00 67.86142
#> 7 1.816117e-01 9.080585e+00 76.94200
#> 8 1.691445e-01 8.457224e+00 85.39922
#> 9 1.658990e-01 8.294950e+00 93.69417
#> 10 1.261165e-01 6.305826e+00 100.00000
#> 11 2.765345e-30 1.382672e-28 100.00000
#> 12 2.293643e-30 1.146822e-28 100.00000
#> 13 1.376840e-30 6.884199e-29 100.00000
#> 14 1.109218e-30 5.546091e-29 100.00000
#> 15 7.212848e-32 3.606424e-30 100.00000
#>
#> $modif
#> mrate cum.mrate
#> 1 73.69174730 73.69175
#> 2 16.69687606 90.38862
#> 3 6.48702831 96.87565
#> 4 3.09577754 99.97143
#> 5 0.02857078 100.00000
#>